If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(P)=(-0.5P^2+15P)-(80P+160/P+12)
We move all terms to the left:
(P)-((-0.5P^2+15P)-(80P+160/P+12))=0
Domain of the equation: P+12))!=0We multiply all the terms by the denominator
P∈R
-((-0.5P^2+15P)-(80P+160+P*P+12))=0
We calculate terms in parentheses: -((-0.5P^2+15P)-(80P+160+P*P+12)), so:We get rid of parentheses
(-0.5P^2+15P)-(80P+160+P*P+12)
We add all the numbers together, and all the variables
(-0.5P^2+15P)-(80P+P*P+172)
We get rid of parentheses
-0.5P^2+15P-80P-P*P-172
We add all the numbers together, and all the variables
-0.5P^2-65P-P*P-172
Wy multiply elements
-0.5P^2-1P^2-65P-172
We add all the numbers together, and all the variables
-1.5P^2-65P-172
Back to the equation:
-(-1.5P^2-65P-172)
1.5P^2+65P+172=0
a = 1.5; b = 65; c = +172;
Δ = b2-4ac
Δ = 652-4·1.5·172
Δ = 3193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-\sqrt{3193}}{2*1.5}=\frac{-65-\sqrt{3193}}{3} $$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+\sqrt{3193}}{2*1.5}=\frac{-65+\sqrt{3193}}{3} $
| (y-3)^2=18 | | 4+2x=11-2x | | 0.3+5.14=2.1x-4.4 | | 5x-17=×+7 | | 11x-5x+165=11x+80 | | 13x-48-7x=102 | | Z=2+2√3i | | 10/9=2/n | | 5(n+2)=5 | | 13x-27-10x=63 | | 7n-(2n+6)=19 | | 8/s=9/12 | | 10k+2=7k+14 | | (X+4)^2+(y-4)=36 | | 6x+260=16x-10 | | 7n-(2n+6=19 | | 5x-x-61=39 | | 10x+25x-10=7(5x+9) | | 25x-36=144 | | |x|-2.8=8 | | 8x+6x-139=127 | | 2(2+8b)-8b=4(3+4b) | | 6x+14x-6=4(5x+8) | | 13.79+.12x=14.54+.13x | | 11x-100-3x=116 | | 6x+34x-5=8(5x+7) | | 0.5*(x+3)*x=20 | | 1.3x–2−(3.3x+5)=2x+1 | | 6a+11=83 | | 2+8(5-2x+3)=-5+12x | | Y=-x+6;(8,5) | | -95-6x+12x=31 |